arXiv:2504.00535v2 Announce Type: replace
Abstract: The first generation of stars, known as Population III (Pop III), played a crucial role in the early Universe through their unique formation environment and metal-free composition. These stars can undergo chemically homogeneous evolution (CHE) due to fast rotation, becoming more compact and hotter/bluer than their (commonly assumed) non-rotating counterparts. In this study, we investigate the impact of Pop III CHE on the 21-cm signal and cosmic reionization under various assumptions on Pop III star formation, such as their formation efficiency, initial mass function, and transition to metal-enriched star formation. We combine stellar spectra computed by detailed atmosphere models with semi-numerical simulations of Cosmic Dawn and the Epoch of Reionization ($z\sim 6-30$). The key effect of CHE arises from the boosted ionizing power of Pop III stars, which reduces the Pop III stellar mass density required to reproduce the observed Thomson scattering optical depth by a factor of $\sim 2$. Meanwhile, the maximum 21-cm global absorption signal is shallower by up to $\sim 15$ mK (11%), partly due to the reduced Lyman-band emission from CHE, and the large-scale ($k\sim 0.2\ \rm cMpc^{-1}$) power drops by a factor of a few at $z\gtrsim 25$. In general, the effects of CHE can be comparable to those of Pop III star formation parameters, showing an interesting interplay with distinct features in different epochs. These results highlight the importance of metal-free/poor stellar evolution in understanding the early Universe and suggest that future studies should consider joint constraints on the physics of star/galaxy formation and stellar evolution.
arXiv:2507.17809v1 Announce Type: new
Abstract: Over the past few years \textit{JWST} has been a major workhorse in detecting and constraining the metal enrichment of the first galaxies in the early Universe and finding the source of the ionisation of their interstellar medium. In this work, we present new deep JWST/NIRSpec spectroscopy of GS-z11-1, a galaxy at z = 11.28, in which we report the detection of multiple rest-frame UV and optical emission lines: CIII]$\lambda\lambda$1907,09, CIV]$\lambda\lambda$1548,51, [OII]$\lambda\lambda$3726,29, [NeIII]$\lambda$3869, H$\gamma$ and tentative evidence for HeII$\lambda$1640. The ionisation properties of GS-z11-1 are consistent with star formation, with potential contribution from an active galactic nucleus (AGN). We estimate a galaxy stellar mass of log(M$_{*}$/M$_{\odot}$) = 7.8$\pm$0.2 and log(SFR/(M$_{\odot}$ yr$^{-1}$))= 0.32$\pm$0.11 for the fiducial SF-only models. We measured C/O from the SED modelling of C/O = 1.20$\pm0.15 \times$ solar. This is one of the highest C/O abundances at z$>$10, and it is consistent with either PopII and PopIII enrichment paths. Despite this source being extremely compact, with a half-light radius of 73$\pm$10 pc, we see no increased equivalent width of NIV] and NIII] emission lines as seen in some other compact sources at similar redshifts, a potential signature of second-generation stars in GCs. Overall, this galaxy exhibits low metallicity and high ionisation parameter consistent with intense star-formation or AGN activity in the early Universe, possibly observed before the enrichment by the second generation of stars in proto-globular clusters in the core of the galaxy.
arXiv:2507.09228v2 Announce Type: replace
Abstract: Constraints on the cosmological parameters of Torsion Condensation (TorC) are investigated using Planck 2018 Cosmic Microwave Background data. TorC is a case of Poincar\'e gauge theory -- a formulation of gravity motivated by the gauge field theories underlying fundamental forces in the standard model of particle physics. Unlike general relativity, TorC incorporates intrinsic torsion degrees of freedom while maintaining second-order field equations. At specific parameter values, it reduces to the $\Lambda$CDM model, providing a natural extension to standard cosmology. The base model of TorC introduces two parameters beyond those in $\Lambda$CDM: the initial value of the torsion scalar field and its time derivative -- one can absorb the latter by allowing the dark energy density to float. To constrain these parameters, `PolyChord` nested sampling algorithm is employed, interfaced via `Cobaya` with a modified version of `CAMB`. Our results indicate that TorC allows for a larger inferred Hubble constant, offering a potential resolution to the Hubble tension. Tension analysis using the $R$-statistic shows that TorC alleviates the statistical tension between the Planck 2018 and SH0Es 2020 datasets, though this improvement is not sufficient to decisively favour TorC over $\Lambda$CDM in a Bayesian model comparison. This study highlights TorC as a compelling theory of gravity, demonstrating its potential to address cosmological tensions and motivating further investigations of extended theories of gravity within a cosmological context. As current and upcoming surveys -- including Euclid, Roman Space Telescope, Vera C. Rubin Observatory, LISA, and Simons Observatory -- deliver data on gravity across all scales, they will offer critical tests of gravity models like TorC, making the present a pivotal moment for exploring extended theories of gravity.
arXiv:2507.17738v1 Announce Type: new
Abstract: Little Red Dots (LRDs) are compact, red sources discovered by JWST at high redshift ($z \gtrsim 4$), marked by distinctive "V-shaped" spectral energy distributions (SEDs) and often interpreted as rapidly accreting AGNs. Their evolution remains unclear, as identifying counterparts at lower redshifts is challenging. We present WISEA J123635.56+621424.2 (here dubbed {\it the Saguaro}), a $z=2.0145$ galaxy in GOODS-North, as a possible analog of high-redshift LRDs and a potential missing link in their evolutionary path toward lower-redshift systems. It features a compact LRD-like nucleus surrounded by a face-on spiral host. Its connection to LRDs includes that: (1) its nuclear spectrum shows a clear "V-shaped" SED; and (2) when redshifted to $z=7$, surface brightness dimming makes the host undetectable, thus mimicking an LRD. This suggests that high-redshift LRDs may be embedded in extended hosts. To test this, we stack rest-frame UV images of 99 photometrically selected LRDs, revealing faint, diffuse emission. Stacking in redshift bins reveals mild radial growth, consistent with the expected galaxy size evolution. A simple analytic model confirms that surface brightness dimming alone can explain their compact appearance. Lastly, we show that {\it the Saguaro} is not unique by describing similar objects from the literature at $z\lesssim3.5$. Taken together, our results support a scenario in which LRDs may not be a distinct population, but could be the visible nuclei of galaxies undergoing a short-lived, AGN-dominated evolutionary phase, with their compact, red appearance driven largely by observational biases.
arXiv:2502.20550v2 Announce Type: replace
Abstract: We present JWST NIRSpec integral field spectroscopy observations of the z=5.89 quasar NDWFS J1425+3254 from 0.6-5.3 microns, covering the rest-frame ultraviolet and optical at spectral resolution R~100. The quasar has a black hole mass of $M_{\rm{BH}}=(1.4\substack{+3.1\\-1.0})\times10^9 M_\odot$ and an Eddington ratio $L_{\rm{Bol}}/L_{\rm{Edd}}=0.3\substack{+0.6\\-0.2}$, as implied from the broad Balmer H$\alpha$ and H$\beta$ lines. The quasar host has significant ongoing obscured star formation, as well as a quasar-driven outflow with velocity $6050\substack{+460\\-630}$ km/s and ionised outflow rate of $1650\substack{+130\\-1230}M_\odot$yr$^{-1}$, possibly one of the most extreme outflows in the early Universe. The data also reveal that two companion galaxies are merging with the quasar host. The north-eastern companion galaxy is relatively old and very massive, with luminosity-weighted stellar age $65\substack{+9\\-4}$ Myr, stellar mass $(3.6\substack{+0.6\\-0.3})\times10^{11} M_\odot$, and star-formation rate (SFR) ~15-30 $M_\odot$yr$^{-1}$. A bridge of gas connects this companion galaxy and the host, confirming their ongoing interaction. A second merger is occurring between the quasar host and a much younger companion galaxy to the south, with stellar age $6.7\pm1.8$ Myr, stellar mass $(1.9\pm0.4)\times10^{10} M_\odot$, and SFR ~40-65 $M_\odot$yr$^{-1}$. There is also another galaxy in the field that is likely in the foreground at z=1.135, that could be gravitationally lensing the quasar with magnification $1<\mu<2$, and so <0.75 mag. Overall, the system is a "train-wreck" merger of three galaxies, with star formation and extreme quasar activity that were likely triggered by these ongoing interactions.
arXiv:2507.16957v1 Announce Type: new
Abstract: At any given scale, 3$\times$2-point statistics extract only three numbers from the joint distribution of the cosmic matter density and galaxy density fluctuations: their variances and their covariance. It is well known that the full shape of the PDF of those fluctuations contains significantly more information than can be accessed through these three numbers. But the study of the PDF of cosmic density fluctuations in real observational data is still in its infancy. Here we present \verb|CosMomentum|, a public software toolkit for calculating theoretical predictions for the full shape of the joint distribution of a line-of-sight projected tracer density and the gravitational lensing convergence. We demonstrate that an analysis of this full shape of the PDF can indeed disentangle complicated tracer bias and stochasticity relations from signatures of cosmic structure growth. Our paper also provides back-drop for an upcoming follow-up study, which prepares PDF analyses for application to observational data by incorporating the impact of realistic weak lensing systematics.
arXiv:2507.14936v1 Announce Type: new
Abstract: A majority of JWST/NIRSpec/IFU studies at high redshifts to date have focused on UV-bright or massive objects, while our understanding of low-mass galaxies at early cosmic times remains limited. In this work, we present NIRSpec/IFS high-resolution observations of two low-mass ($M_* < 10^9 \ M_\odot$), low-metallicity ($[12 + \log(\text{O/H})] < 8$) galaxies at $z \sim 7.66$ with evidence of hosting AGN. Using spatially-resolved maps of rest-frame optical emission lines, we find flat metallicity profiles, indicative of ISM redistribution by outflows or past merging. We identify kinematical components decoupled from galactic rotation with velocities of $\sim 250 - 500 \ \text{km} \ \text{s}^{-1}$. We argue that these components are likely tracing outflows, possibly AGN-driven, for which we infer outflow rates of $\sim 21 - 40 \ M_\odot \ \text{yr}^{-1}$, suggesting they may suppress future star formation. We compare our observational results to those from the new large-volume AESOPICA simulations, which fully incorporate different models of black hole growth and AGN feedback. We find that our observational results of $v_\text{out}/v_\text{esc}$ and $\dot{M}_\text{out}$/SFR are consistent with the AGN population in these simulations, hinting that AGN-driven feedback may contribute to quenching both in our systems and in a wider population of low-mass galaxies in the early Universe. This novel study demonstrates the necessity of deep IFU observations to decompose the complex kinematics and morphology of high-$z$ galaxies, trace outflows, and constrain the effect of feedback in these low-mass systems.
The primary role of jets in exploding all core-collapse supernovae
I will present evidence in core-collapse supernova remnants for the action of jets in the supernova explosion process. Two main types of observations appear in many, but not all, core-collapse supernova remnants: (i) the well-established presence of a pair of opposite `ears’ and (ii) the recently identified point-symmetrical structure in 15 remnants, including SN 1987A , Cassiopeia A, Vela, and the Crab Nebula. The pair of opposite ears suggests that two opposite jets inflate the ears. The point-symmetrical structure results from two or more pairs of jets along different axes, as the jittering jets explosion mechanism (JJEM) predicts. I will compare the JJEM with the neutrino-driven mechanism and conclude that the neutrino-driven mechanism comes short in explaining observations, leaving the JJEM as the primary explosion mechanism of CCS Ne. The JJEM has some unique signatures in addition to its point-symmetric morphology, such as gravitational waves and energetic explosions. I will comment on the overrated popularity of the neutrino-driven mechanism in scientific meetings and literature.
Add to your calendar or Include in your list
arXiv:2507.13905v1 Announce Type: new
Abstract: We systematically extend the framework of galaxy bias renormalization to two-loop order. For the minimal complete basis of 29 deterministic bias operators up to fifth order in the density field and at leading order in gradient expansion we explicitly work out one- and two-loop renormalization. The latter is provided in terms of double-hard limits of bias kernels, which we find to depend on only one function of the ratio of the loop momenta. After including stochasticity in terms of composite operator renormalization, we apply the framework to the two-loop power spectrum of biased tracers and provide a simple result suitable for numerical evaluation. In addition, we work out one- and two-loop renormalization group equations (RGE) for deterministic bias coefficients related to bias operators constructed from a smoothed density field, generalizing previous works. We identify a linear combination of bias operators with enhanced UV sensitivity, related to a positive eigenvalue of the RGE. Finally, we present an analogy with the RGE as used in quantum field theory, suggesting that a resummation of large logarithms as employed in the latter may also yield useful applications in the study of large-scale galaxy bias.
arXiv:2504.01067v2 Announce Type: replace
Abstract: We present deep JWST/NIRCam and MIRI imaging of Ion1, a previously confirmed Lyman Continuum (LyC)-emitting galaxy at $z_{spec}=3.794$. Together with existing HST imaging, these new observations from the JADES program enable a joint analysis of Ion1's LyC, rest-frame UV, stellar, and dust emission with unprecedented detail. We report the first detection of dust emission at rest-frame $\sim3 \mu$m in a high-redshift LyC-emitting galaxy using MIRI/F1500W. Our analysis suggests a porous distribution of dust in Ion1, with regions exhibiting evidence of dust deficit coinciding both with LyC-emitting regions and with the peak of H$\alpha$ emission. Furthermore, multi-band NIRCam imaging reveals a strong FUV-to-optical color gradient, where LyC-emitting regions appear significantly bluer than the rest of Ion1. Spatially resolved SED fitting confirms that this color gradient is primarily driven by spatially varying dust attenuation. Together, these findings suggest that Ion1's LyC emission originates from a compact star-forming complex near its stellar-light centroid, where stellar feedback carves out low HI column density channels, facilitating LyC escape. However, only a fraction of these LyC photons - specifically those along sightlines with minimal HI obscuration - ultimately escape and reach observers. This work underscores the critical role of dust and neutral gas geometry in shaping LyC escape in galaxies at high redshifts. Anisotropic LyC escape may be a common feature in the early Universe, which must be properly incorporated to constrain the Epoch of Reionization.
arXiv:2507.14136v1 Announce Type: new
Abstract: We present new constraints on the halo masses and matter density profiles of DESI galaxy groups by cross-correlating samples of Luminous Red Galaxies (LRGs) and Bright Galaxy Survey (BGS) galaxies with the publicly available CMB lensing convergence map from ACT DR6. This provides an independent, lensing-based calibration of halo masses, complementary to methods relying on clustering or dynamics. We derive constraints on the mean halo mass for three DESI-selected samples, finding $\log(M_{\rm halo}/(M_\odot/h)) \approx 13.18$, 13.03 and 13.02 for the Main LRG, Extended LRG, and BGS samples, respectively. Using a halo model approach, we also compare the projected galaxy-matter density profiles with previously reported gas profiles inferred from measurements of the kinematic Sunyaev-Zel'dovich (kSZ) effect. This work addresses one of the key uncertainties in interpreting kSZ signals -- the unknown host halo mass distribution -- by providing an independent and consistent mass calibration. The agreement between the gas and total mass profiles at large aperture suggests that sufficiently far from the group center (2--3 virial radii), we recover all the baryons, offering a resolution to the 'missing baryon' problem. We further study the cumulative gas fractions for all galaxies as well as for the most massive galaxy groups in the sample ($\log(M_{\rm halo}/(M_\odot/h)) \approx 13.5$), finding values that are physically sensible and in agreement with previous findings using kSZ and X-ray data: compared to the TNG300 simulation, the observed gas fractions are systematically lower at fixed radius by $\gtrsim$4$\sigma$, providing compelling, independent evidence for stronger baryonic feedback in the real Universe. These findings highlight the power of combining CMB lensing with galaxy surveys to probe the interplay between baryons and dark matter in group-sized halos.
arXiv:2507.13495v1 Announce Type: new
Abstract: Simulation-Based Inference (SBI) offers a principled and flexible framework for conducting Bayesian inference in any situation where forward simulations are feasible. However, validating the accuracy and reliability of the inferred posteriors remains a persistent challenge. In this work, we point out a simple diagnostic approach rooted in ensemble learning methods to assess the internal consistency of SBI outputs that does not require access to the true posterior. By training multiple neural estimators under identical conditions and evaluating their pairwise Kullback-Leibler (KL) divergences, we define a consistency criterion that quantifies agreement across the ensemble. We highlight two core use cases for this framework: a) for generating a robust estimate of the systematic uncertainty in parameter reconstruction associated with the training procedure, and b) for detecting possible model misspecification when using trained estimators on real data. We also demonstrate the relationship between significant KL divergences and issues such as insufficient convergence due to, e.g., too low a simulation budget, or intrinsic variance in the training process. Overall, this ensemble-based diagnostic framework provides a lightweight, scalable, and model-agnostic tool for enhancing the trustworthiness of SBI in scientific applications.
Instead of the big bang, some physicists have suggested that our universe may have come from a big bounce following another universe contracting – but quantum theory could rule this out
Small, compact galaxies seen in the early universe have puzzled astronomers – finding these unusual objects closer to home could provide hints about how they form
arXiv:2507.11530v2 Announce Type: new
Abstract: We present direct measurements of the intrinsic alignments (IA) of over 2 million spectroscopic galaxies using DESI Data Release 1 and imaging from four lensing surveys: DES, HSC, KiDS, and SDSS. In this uniquely data-rich regime, we take initial steps towards a more tailored IA modelling approach by building a library of IA measurements across colour, luminosity, stellar mass, and redshift. We map the dependence between galaxy type -- in terms of rest-frame colour, strength of the 4000 Angstrom break, and specific star formation rate -- and IA amplitude; the bluest galaxies have an alignment consistent with zero, across low ($0.05
arXiv:2507.11530v1 Announce Type: new
Abstract: We present direct measurements of the intrinsic alignments (IA) of over 2 million spectroscopic galaxies using DESI Data Release 1 and imaging from four lensing surveys: DES, HSC, KiDS, and SDSS. In this uniquely data-rich regime, we take initial steps towards a more tailored IA modelling approach by building a library of IA measurements across colour, luminosity, stellar mass, and redshift. We map the dependence between galaxy type -- in terms of rest-frame colour, strength of the 4000 Angstrom break, and specific star formation rate -- and IA amplitude; the bluest galaxies have an alignment consistent with zero, across low (0.05
Nature, Published online: 15 July 2025; doi:10.1038/d41586-025-02227-0
Data from a South Pole observatory show that the fraction of protons in ultrahigh-energy cosmic rays is lower than expected.
arXiv:2507.09228v1 Announce Type: new
Abstract: Constraints on the cosmological parameters of Torsion Condensation (TorC) are investigated using Planck 2018 Cosmic Microwave Background data. TorC is a case of Poincar\'e gauge theory -- a formulation of gravity motivated by the gauge field theories underlying fundamental forces in the standard model of particle physics. Unlike general relativity, TorC incorporates intrinsic torsion degrees of freedom while maintaining second-order field equations. At specific parameter values, it reduces to the $\Lambda$CDM model, providing a natural extension to standard cosmology. The base model of TorC introduces two parameters beyond those in $\Lambda$CDM: the initial value of the torsion scalar field and its time derivative -- one can absorb the latter by allowing the dark energy density to float. To constrain these parameters, `PolyChord` nested sampling algorithm is employed, interfaced via `Cobaya` with a modified version of `CAMB`. Our results indicate that TorC allows for a larger inferred Hubble constant, offering a potential resolution to the Hubble tension. Tension analysis using the $R$-statistic shows that TorC alleviates the statistical tension between the Planck 2018 and SH0Es 2020 datasets, though this improvement is not sufficient to decisively favour TorC over $\Lambda$CDM in a Bayesian model comparison. This study highlights TorC as a compelling theory of gravity, demonstrating its potential to address cosmological tensions and motivating further investigations of extended theories of gravity within a cosmological context. As current and upcoming surveys -- including Euclid, Roman Space Telescope, Vera C. Rubin Observatory, LISA, and Simons Observatory -- deliver data on gravity across all scales, they will offer critical tests of gravity models like TorC, making the present a pivotal moment for exploring extended theories of gravity.
arXiv:2507.08929v1 Announce Type: new
Abstract: The majority of Little Red Dots (LRDs) hosting Active Galactic Nuclei (AGN) exhibits broad H$\alpha$ emission, which recent studies propose originates from scattering off free electrons within an ionized and dense medium embedding the Broad Line Region (BLR), rather than directly from the BLR itself. This model suggests that the observed broad lines may be intrinsically narrower than observed, which would lead to black hole masses that are up to two orders of magnitude smaller than what inferred when assuming that the whole broad line comes from the BLR. To test this model, we present a joint analysis of multiple hydrogen recombination lines in the ''Rosetta Stone''AGN, the brightest known LRD at $z$=2.26. We show that H$\alpha$, H$\beta$ and Pa$\beta$ have different spectral profiles, which is inconsistent with the predictions of the simple electron scattering scenario. Additionally, we test a variety of exponential models and show that none of them can simultaneously reproduce all three line profiles with physically plausible parameters. The inadequacy of these models for the Rosetta Stone implies that the scenario of electron scattering by an ionized medium surrounding the BLR is not universally applicable to LRDs and AGN, and therefore provides a counterexample to the claim of a universal and systematic overestimation of black hole masses.